The Structured Singular Value for Linear Input/Output Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structured Singular Value for Linear Input/Output Operators

In this paper, we employ a lifting method introduced by the authors in order to study the structured singular value applied to input/output operators of control systems. We moreover give a new criterion which guarantees that the structured singular value equals its upper bound de ned by D-scalings.

متن کامل

The complex structured singular value

A tutorial introduction to the complex structured singular value (μ) is presented, with an emphasis on the mathematical aspects of μ. The μ-based methods discussed here have been useful for analyzing the performance and robustness properties of linear feedback systems. Several tests for robust stability and performance with computable bounds for transfer functions and their state-space realizat...

متن کامل

Optimal Approximation of Linear Operators: a Singular Value Decomposition Approach

The purpose of this paper is to propose a definition of a set of singular values and a singular value decomposition associated with a linear operator defined on arbitrary normed linear spaces. This generalizes the usual notion of singular values and singular value decompositions to operators defined on spaces equipped with the p-norm, where p is arbitrary. Basic properties of these generalized ...

متن کامل

Singular Value Inequalities for Compact Operators

A singular value inequality due to Bhatia and Kittaneh says that if A and B are compact operators on a complex separable Hilbert space such that A is self-adjoint, B 0, and A B; then sj(A) sj(B B) for j = 1; 2; :::We give an equivalent inequality, which states that if A;B; and C are compact operators such that A B B C 0; then sj(B) sj(A C) for j = 1; 2; :::Moreover, we give a sharper inequality...

متن کامل

Multilinear Singular Value Decomposition for Structured Tensors

The Higher-Order SVD (HOSVD) is a generalization of the Singular Value Decomposition (SVD) to higher-order tensors (i.e. arrays with more than two indices) and plays an important role in various domains. Unfortunately, this decomposition is computationally demanding. Indeed, the HOSVD of a third-order tensor involves the computation of the SVD of three matrices, which are referred to as "modes"...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Control and Optimization

سال: 1996

ISSN: 0363-0129,1095-7138

DOI: 10.1137/s0363012994268825